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Abstract

This paper investigates the problem of chaotic dynamics in attitude transition maneuvers. We consider the case of a rigid

body with a completely liquid-filled cavity, whose spin changes from the minor axis to the major axis under the influence of

viscous damping and low-amplitude oscillating perturbations expressed as external torques. The Melnikov integral is used

to predict transversal intersections of the perturbed system’s stable and unstable manifolds. After discussing the phase

space of the system, the equations of motion are transformed into a form more suitable for the application of Melnikov’s

method. Melnikov’s method yields an analytical criterion for homoclinic chaos, in the form of an inequality written in

terms of the system parameters. In addition, the prediction of the Melnikov criterion is compared to numerical simulations

of the system. Finally, we investigate the dependence of chaotic dynamics on quantities such as body shape, degree of

damping, and frequency of the perturbing torques.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The attitude evolution of a rigid body under various external torques has been extensively studied over the
past few decades, because of this problem’s great importance in the field of aerospace engineering. The
prediction and control of attitude evolution are important problems in the dynamics of modern spacecraft. It
is well known that for a torque-free rigid body with three distinct moments of inertia, rotation is stable about
the axes of maximum and minimum moments of inertia but unstable about the third axis. The stable rotations
are central points of equilibrium, and the unstable rotation is a saddle point of equilibrium (or ‘saddle’, for
short). When a rigid body is subjected to a small torque, the heteroclinic orbits (separatrices) that connect
points of equilibrium are expected to break and perhaps intersect transversally. The existence of transverse
intersections between heteroclinic and/or homoclinic orbits implies complex dynamic behavior, in the sense of
the Smale horseshoe map, and is one of the necessary conditions for chaotic motion to occur. There is an
analytical technique called Melnikov’s method that can detect transverse intersections of heteroclinic
(homoclinic) orbits and chaotic motion in nonlinear dynamic systems, using ideas that go back to Poincaré. It
is often important to accurately predict the timing or sequence of attitude maneuvers, but the presence of
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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chaotic dynamics could render any attempt at prediction useless. It is thus necessary to understand the
conditions under which chaos plays a role in the attitude dynamics of any given spacecraft. The equations of
motion describing the attitude dynamics of complex, non-rigid spacecraft are readily derived, but analytical
solutions have proven elusive. In fact, if the system is nonlinear and thus potentially chaotic, such solutions are
fundamentally unobtainable. While numerical solutions to these highly nonlinear equations can be obtained
for specific parameter values, many interesting features of the dynamical system can become obscured by this
approach. Fortunately, a great deal of physical insight into the behavior of complex systems can be obtained
by analyzing the case of a simpler rigid body. A perturbation approach can then be used to model and analyze
similar spacecraft, at least in approximation.

Certain dynamical aspects of attitude transition maneuvers have been studied for a special class of
spacecraft: the so-called dual-spin satellites. These satellites are reoriented by spinning up rotors relative to
the main spacecraft body. Attitude resonances, which may occur during either spin-up or spin-down,
have been investigated for this maneuver using perturbation techniques and numerical simulations [1–5]. In
the case of single-body satellites, the problem of controlling the final orientation of the major axis has been
studied by many authors, such as Barba et al. [6]. The problem of a rigid body with liquid-filled cavities
has also been of major concern to aerospace engineers. Rumyantsev has reviewed the problem of stable rigid
body motion for fluid-filled bodies [7]; indeed, the Lyapunov–Rumyantsev theorem has found wide
application in the design of artificial satellites and liquid-filled projectiles. Rahn has modeled a spacecraft as a
rigid body with a spherical, dissipative fuel slug, and found a control system that could guarantee any final
orientation after the spin transition [8]. More recently, Gray et al. have used Melnikov’s method to detect the
presence of chaotic dynamics originating from the saddles of damped satellites. The satellites were subject to
small perturbations during an attitude transition maneuver, due to the presence of oscillating sub-masses, a
flexible appendage limited to torsional vibrations, and a rotor immersed in a viscous fluid [9,10]. This study
used spherical coordinates to transform the equations of motion into a form better suited to Melnikov’s
method, and was able to derive analytical criteria for the occurrence of chaotic motion in terms of system
parameters.

In other recent works, Tong and Tabarrok have used Melnikov’s method to investigate the attitude
dynamics of self-excited rigid bodies, subject to small perturbation torques in a viscous medium [11]. Cooper
and Bishop have used Melnikov’s method to study the chaotic attitude dynamics of a rigid body driven by
sinusoidally varying torques [12]. Meehan and Asokanthan have studied chaotic motion in a rotating body
subject to a sinusoidally varying external torques, with a circumferential nutation damper [13,14]. Using time
histories, phase space analysis, Poincaré maps, Lyapunov exponents, and bifurcation diagrams, they
investigated the onset of chaos over a range of driving torque amplitudes and frequencies to better understand
the effect of control strategies on chaotic systems. For the case of a rigid body subject to small conservative
torques, Homes and Marsden have extended Melnikov’s method to systems with a topologically nontrivial
phase space [15]. They used this version of Melnikov’s method to investigate the chaotic motions of a rigid
body in a gravitational field, attached to a flywheel and an asymmetric gyrostat.

The goal of this paper is to develop an attitude transition maneuver capable of taking a completely liquid-
filled satellites from minor axis to major axis spin while under the influence of low-level damping and
non-Hamiltonian, time-periodic perturbations. First, Melnikov’s method is employed to investigate the
nonlinear attitude motion of a rigid body with a completely liquid-filled cavity. More precisely, Melnikov’s
method is used to predict the transverse intersections of stable and unstable manifolds for the perturbed
rigid body just described. It is shown that there exist transversal intersections of heteroclinic orbits only
for certain parameter ranges. Thus, in some cases the motion of a rigid body with a completely liquid-filled
cavity subject to small periodic torques could become quite complex, and even give rise to chaotic motion.
This type of problem is not only of theoretical interest, but also of great practical importance in satellite
design. The criterion obtained here should be of great help in designing spinning satellites, for example.
In Section 2, we develop the mathematical equations and derive the appropriate Melnikov function using
residue theory. This aspect of the paper is described more fully in the Appendix A. In Section 3, we obtain
the existence condition for homoclinic chaos and investigate the dependence of chaotic dynamics on system
parameters. In Section 4, we turn to a numerical study of the chaotic attractors. In Section 5, we summarize
our results.
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2. Mathematical formulation

2.1. Model equations

The spacecraft model considered (Fig. 1) is composed of a rigid carrier body with a completely liquid-filled
spherical container. Let x, y, z denote an orthogonal, body-fixed coordinate system aligned with the principal
axes of the carrier body, whose origin is at the center of mass c. The rigid body has three angular momentum
components H1, H2, H3 defined about the major, intermediate, and minor body axes, respectively. The fuel in
the container is modeled as a spherical slug of inertia J surrounded by a viscous layer. Designating the relative
angular rates between the spacecraft body and the fuel slug as s1, s2, s3, the equations of motion are

_H1 ¼
I2 � I3

ðI3 � JÞðI2 � JÞ
H3H2 þ ms1 þM1, (1a)

_H2 ¼
I3 � I1

ðI1 � JÞðI3 � JÞ
H1H3 þ ms2 þM2, (1b)

_H3 ¼
I1 � I2

ðI1 � JÞðI2 � JÞ
H1H2 þ ms3 þM3, (1c)

_s1 ¼
H3

I3 � J
s2 �

H2

I2 � J
s3 �

_H1

I1 � J
�

ms1
J

, (1d)

_s2 ¼
H1

I1 � J
s3 �

H3

I3 � J
s1 �

_H2

I2 � J
�

ms2
J

, (1e)

_s3 ¼
H2

I2 � J
s1 �

H1

I1 � J
s2 �

_H3

I3 � J
�

ms3
J

, (1f)

where m is the viscous damping coefficient of the slug; I1, I2, and I3 are the principal moments of inertia of the
spacecraft, including the slug; and M1, M2, M3 are small perturbation torques about the principal axes. The
non-Hamiltonian perturbations studied in this work are explicit functions of time, resulting in equations of
motion with time-dependent coefficients. This type of perturbation is of considerable practical importance in
satellite design. Such time-dependent driving forces could arise from reciprocating masses, misaligned rotors
with constant angular velocities, or rotors with time-dependent spin rates. In this paper, these torques are
given the harmonic form �Ti sin Ot, where � is a small perturbation parameter. The total momentum H and
energy T of the body can be expressed as

H ¼ ðI1o1 þ Js1Þ
2
þ ðI2o2 þ Js2Þ

2
þ ðI3o3 þ Js3Þ

2, (2)

2T ¼ ðI1 � JÞo2
1 þ ðI2 � JÞo2

2 þ ðI3 � JÞo2
3 þ J½ðo1 þ s1Þ

2
þ ðo2 þ s2Þ

2
þ ðo3 þ s3Þ

2
�. (3)
z

y

x

Mass center c 

Completely fuel-filled cavity

Carrier body

Fig. 1. Spacecraft model.
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It is now convenient to make the equations of motion dimensionless and explicitly introduce the
perturbation parameter e. This will make it clearer which terms are of higher order in e and therefore smaller,
and which terms should be retained. We define the following dimensionless quantities:

�D
J

I2
; t ¼

Ht

I2
; ~Hi ¼

Hi

H
; ~H

0

i D
I2

H2

� �
_Hi;

r1 D
I3

I2
41; r2 D

I1

I2
o1; ~mD

m
H
¼ Oð�Þ; ~si D

I2

�H
si;

~s0i D
I22
�H2

_si; and ~OD
OI2

H
:

The notation ðÞ0 ¼ dðÞ=dt denotes differentiation with respect to the dimensionless time t, also defined
above. We assume I1oI2oI3, and therefore 0or2o1or1. Note that the number of parameters describing the
body moments of inertia has been reduced to two: r1r2. Carrying out this change of variables leads to the
equivalent set of dimensionless equations

~H
0

1 ¼
1� r1

ðr1 � �Þð1� �Þ
~H2
~H3 þ �ð ~m ~s1 þ T1 sin ~OtÞ, (4a)

~H
0

2 ¼
r1 � r2

ðr2 � �Þðr1 � �Þ
~H1
~H3 þ �ð ~m ~s2 þ T2 sin ~OtÞ, (4b)

~H
0

3 ¼
r2 � 1

ð1� �Þðr2 � �Þ
~H1
~H2 þ �ð ~m ~s3 þ T3 sin ~OtÞ, (4c)

� ~s01 ¼
~H3

r5 � 1
~s2 �

~H2

r4 � 1
~s3 �

~H
0

1

r2 � �
� ~m ~s1, (4d)

� ~s02 ¼
~H1

r3 � 1
~s3 �

~H3

r5 � 1
~s1 �

~H
0

2

1� �
� ~m ~s2, (4e)

� ~s03 ¼
~H2

r4 � 1
~s1 �

~H1

r3 � 1
~s2 �

~H
0

3

r1 � �
� ~m ~s3, (4f)

where r3 ¼ I1/J, r4 ¼ I2/J, and r5 ¼ I3/J. Eqs. (4a)–(4f) are the full equations of motion, with no simplifying
assumptions. As we shall see, in order to apply Melnikov’s method these equations must now be separated
into an unperturbed part plus a series of perturbed terms. This is done by expanding the equations in powers
of e; only terms up to the appropriate order in e will be retained. To first order, the equations of motion can be
written as

~H
0

1 ¼
1� r1

r1
~H2
~H3 þ �

1

r21
� 1

� �
~H2
~H3 þ ~m ~s1 þ T1 sin ~Ot

� �
þOð�2Þ, (5a)

~H
0

2 ¼
r1 � r2

r2r1
~H1
~H3 þ �

1

r22
�

1

r12

� �
~H1
~H3 þ ~m ~s2 þ T2 sin ~Ot

� �
þOð�2Þ, (5b)

~H
0

3 ¼
r2 � 1

r2
~H1
~H2 þ � 1�

1

r22

� �
~H1
~H2 þ ~m ~s3 þ T3 sin ~Ot

� �
þOð�2Þ, (5c)

� ~s01 ¼
~H3

r5 � 1
~s2 �

~H2

r4 � 1
~s3 �

~H
0

1

r2
� ~m ~s1 þOð�Þ, (5d)

� ~s02 ¼
~H1

r3 � 1
~s3 �

~H3

r5 � 1
~s1 � ~H

0

2 � ~m ~s2 þOð�Þ, (5e)
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� ~s03 ¼
~H2

r4 � 1
~s1 �

~H1

r3 � 1
~s2 �

~H
0

3

r1
� ~m ~s3 þOð�Þ. (5f)

In the next section, we describe a procedure that can reduce Eqs. (5a)–(5f) to three equations which have an
unperturbed, spherical phase space, by the elimination of Eqs. (5d)–(5f). Due to the nature of this procedure,
we do not need to retain any terms of O(e) or higher on the right-hand side of Eqs. (5d)–(5f).

2.2. Melnikov’s method

To apply Melnikov’s method, the unperturbed phase space must include heteroclinic orbits between pairs of
saddle points and/or homoclinic orbits from a single saddle point. Melnikov’s method will evaluate changes in
the Poincaré map of the phase space when the system is perturbed. The unperturbed phase space for the
system given in Eqs. (5a)–(5f) is of course found by setting e ¼ 0. Doing so eliminates the interdependence
between Eqs. (5a)–(5c) and Eqs. (5d)–(5f) and allows us to solve Eqs. (5a)–(5c) independently. The
unperturbed system of equations corresponding to Eqs. (5a)–(5c) is

~H
0

1 ¼
1� r1

r1
~H2
~H3, (6a)

~H
0

2 ¼
r1 � r2

r2r1
~H1
~H3, (6b)

~H
0

3 ¼
r2 � 1

r2
~H1
~H2. (6c)

These equations are identical to Euler’s rotational equations of motion for a torque-free rigid body. The
spherical phase space for the unperturbed system is shown in Fig. 2, where the dimensionless, body-fixed
angular momentum components ~H1; ~H2; ~H3 are the phase variables. This phase space has six equilibrium
points at {(71,0,0), (0,71,0), (0,0,71)}, where the equilibrium points (71,0,0) and (0,0,71) are neutrally
stable centers corresponding to spin around the minor and major axis, respectively. The equilibrium points at
(0,71,0) are unstable, hyperbolic saddle points corresponding to spin about the intermediate axis. Note the
presence of heteroclinic orbits joining the two saddle points.

Melnikov’s method can now be applied to Eqs. (5a)–(5f). Melnikov’s method is a perturbation technique
that gives global information about the dynamics of the system. The method detects intersections of the stable
and unstable hyperbolic saddle manifolds in planar Poincaré maps. The existence of these intersections implies
the existence of Smale horseshoes and chaos, via the Smale-Birkhoff theorem [16]. For a detailed presentation
of Melnikov’s theory, see the work of Wiggins, or of Guckenheimer and Holmes [17,18]. The most common
version of Melnikov’s method considers systems of the form

x ¼ f ðx; mÞ þ �gðx; t; mÞ; x ¼
u

v

� �
2 R2, (7)
H3
~

major axis

H2
~

intermediate axisH1
~

minor axis
equilibrium

hyperbolic

saddle

hyperbolic 

orbits
equilibrium

Fig. 2. Momentum sphere illustrating the heteroclinic orbits and the hyperbolic saddle points; curves are orbits of constant energy.
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where g is periodic in t, f(x) is a Hamiltonian vector field defined on R2, and eg(x, t) is a small perturbation
which need not be Hamiltonian. It would appear that Melnikov’s method is not applicable to our system,
given the form of Eq. (7). While Melnikov’s method applies to systems whose Poincaré map is planar, the
system considered here is six dimensional. On the other hand, close inspection of Eqs. (5a)–(5f) reveals that
Eqs. (5d)–(5f) couple with Eqs. (5a)–(5c) only through the perturbation terms in Eqs. (5a)–(5c). We therefore
first find the unperturbed solutions of Eqs. (5a)–(5c) (i.e., ~H1; ~H2; ~H3 in the case e ¼ 0), then substitute these
solutions into Eqs. (5d)–(5f). We then solve Eqs. (5d)–(5f) for their unperturbed solutions (s1, s2, s3 in the case
e ¼ 0), and substitute the resulting formulas for s1, s2, s3 back into the perturbation terms of Eqs. (5a)–(5c).
This process results in three interdependent equations for ~H1; ~H2; ~H3, where the unperturbed terms just
represent Euler’s equations of rotational motion and the perturbation terms depend on the ~Hi, the system
parameters, and the dimensionless time t. This process reduces our system from six to three first-order
equations, but still does not allow us to use the planar form of Melnikov’s method. However, a result due to
Holmes and Marsden [15] does allow us to apply Melnikov’s method directly to the equations involving
~H1; ~H2; ~H3. The Melnikov function [15] can be written in the form

Mðt0Þ ¼
Z 1
�1

r ~H½q0ðtÞ�ff ½q0ðtÞ� þ g½q0ðtÞ; tþ t0�gdt, (8)

where r ~H is the gradient with respect to ~Hi of the unperturbed system Hamiltonian ~H, f is the unperturbed
part of the system equations, g is the O(e) perturbation of the system equations, and q0(t) is the solution of a
heteroclinic orbit or trajectory of the unperturbed system. The dimensionless Hamiltonian of the system is
given by ~H ¼ 1

2
ð ~H

2

1=r2 þ ~H
2

2 þ
~H
2

3=r1Þ, and is simply the kinetic energy of the unperturbed system (i.e., the
carrier body). The gradient of ~H with respect to the body-fixed angular momentum components is thus the
vector r ~H ¼ f ~H1=r2; ~H2; ~H3=r1g. Because it can be readily shown that r ~Hf ¼ 0, Eq. (8) simplifies to

Mðt0Þ ¼
Z 1
�1

r ~H½q0ðtÞ�g½q0ðtÞ; tþ t0�dt. (9)

Before this integral can be evaluated, we must find the heteroclinic orbits q0 of the unperturbed system given
by Eqs. (6a)–(6c). Then we must find the unperturbed solutions to Eqs. (5d)–(5f), so that we can substitute for
~si in the perturbation terms of Eqs. (5a)–(5c).
Solutions for the heteroclinic orbits can be readily found in terms of hyperbolic trigonometric functions [1].

These solutions are as follows:

~H1 ¼ s1X 1 sechðDtÞ, (10a)

~H2 ¼ s2 tanhðDtÞ, (10b)

~H3 ¼ s3X 3 sechðDtÞ, (10c)

where X 1 D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ð1� r1Þ=ðr2 � r1Þ

p
, X 3 D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðr2 � 1Þ=ðr2 � 1Þ

p
, and DD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1 � 1Þð1� r2Þ=ðr1r2Þ

p
. The signs

fs1; s2; s3g ¼ �1 must be chosen such that the product s1s2s3 ¼ 1; these permutations give rise to all four of
the heteroclinic orbits shown in Fig. 2.

We can solve Eqs. (5d)–(5f) (with e ¼ 0) for ~si by substituting in the unperturbed solutions for ~Hi and ~H
0

i.
The approximate solutions to these equations are

~s1 ¼ �
1

~m

~H
0

1

r2
�

~H3

r5 � 1
~s2 þ

~H2

r4 � 1
~s3

" #
, (11a)

~s2 ¼
�ðð ~H3

~H
0

1=ðr5 � 1Þr2Þ þ ~m ~H
0

2 � ½ðð
~H3
~H
2

2Þ=ðr5 � 1Þðr4 � 1ÞÞ þ ð ~m ~H1=ðr4 � 1ÞÞ� ~s3

�ðð ~H
2

2Þ=ðr5 � 1Þ2Þ
, (11b)

~s3 ¼
ðð ~H3

~H1
~H
0

1Þ=ððr5 � 1Þðr3 � 1Þr2ÞÞ � ðð ~H3
~H2
~H
0

2Þ=ððr4 � 1Þðr5 � 1ÞÞÞ � ðð ~H
2

3
~H
0

3Þ=ððr5 � 1Þ2r1ÞÞ

~mðð ~H1Þ=ðr3 � 1ÞÞ2 þ ~mðð ~H2Þ=ðr4 � 1ÞÞ2 þ ~mðð ~H3Þ=ðr5 � 1ÞÞ2
. (11c)
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In accordance with Melnikov’s method, we now replace t by t+t0 everywhere that t appears explicitly. We
then substitute the resulting expression for ~si into Eqs. (5a)–(5c), to obtain the final form of the Melnikov
integral.

2.3. Melnikov’s function

The Melnikov integral given in Eq. (9) can now be expanded, where ~H1; ~H2; ~H3 are the unperturbed
solutions equations (10a)–(10c) along the heteroclinic orbits. Because the range of the integral is ð�1;þ1Þ,
all odd functions in the integrand can be eliminated. This leaves the following terms:

Mðt0Þ ¼
Z 1
�1

2 ~H1

r2
~m ~s1 dtþ

Z 1
�1

2 ~H1

r2
T1 cosð ~OtÞ sinð ~Ot0Þdtþ

Z 1
�1

2 ~H2 ~m ~s2 dt

þ

Z 1
�1

2 ~H2T2 sinð ~OtÞ cosð ~Ot0Þdtþ
Z 1
�1

2 ~H3

r1
cosð ~OtÞ sinðOt0Þdt. ð12Þ

Let us define

A1 ¼

Z 1
�1

2 ~H1

r2
~m ~s1 dt, (13)

B1 ¼

Z 1
�1

2 ~H1

r2
T1 cosð ~OtÞdt, (14)

A2 ¼

Z 1
�1

2 ~H2 ~m ~s2 dt, (15)

B2 ¼

Z 1
�1

2 ~H2T2 sinð ~OtÞdt, (16)

C ¼

Z 1
�1

2 ~H3

r1
cosð ~OtÞdt. (17)

Substituting the terms defined in expressions (10) and (11), one obtains

A1 ¼

Z 1
�1

2 ~H1

r2
~m ~s1 dt ¼

Z 1
�1

2 ~mðr6 � 1ÞX 1

r2X 3
½sechðDtÞ�2 dt

þ

Z 1
�1

F ½sinhðDtÞ�2

½coshðDtÞ�4fp1 þ p2½sinhðDtÞ�2g
dt ¼ A10 þ A11, ð18Þ

B1 ¼

Z 1
�1

2X 1T1

r2
sechðDtÞ cosð ~OtÞdt, (19)

A2 ¼ �
2 ~mðr5 � 1ÞX 1D

r2X 3

Z 1
�1

½sechðDtÞ�2

½cschðDtÞ�2
dt, (20)

B2 ¼

Z 1
�1

2T2 tanhðDtÞ sinðOtÞdt, (21)

C ¼

Z 1
�1

2X 3T3

r1
sechðDtÞ cosð ~OtÞ dt. (22)

Eq. (18) makes use of the additional terms

F ¼
1

~m
2DX 3X

3
1

r22ðr5 � 1Þðr4 � 1Þðr3 � 1Þ
þ

2DX 3X 1

r2ðr5 � 1Þðr4 � 1Þ2
�

2DX 3
3X 1

r1r2ðr5 � 1Þ2ðr4 � 1Þ

� �
, (23)
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p1 ¼
X 1

r3 � 1

� �2

þ
X 3

r5 � 1

� �2

, (24)

p2 ¼
1

r4 � 1

� �2

, (25)

A10 ¼

Z 1
�1

2 ~mðr6 � 1ÞX 1

r2X 3
½sechðDtÞ�2 dt, (26)

A11 ¼

Z 1
�1

F ½sinhðDtÞ�2

½coshðDtÞ�4fp1 þ p2½sinhðDtÞ�2g
dt. (27)

By manipulating these equations symbolically with Mathematica 4, we obtain the solutions

A10 ¼

Z 1
�1

2 ~mðr5 � 1ÞX 1

r2X 3
½sechðDtÞ�2 dt ¼

4 ~mðr5 � 1ÞX 1

r2X 3
, (28)

B1 ¼

Z 1
�1

2X 1T1

r2
sechðDtÞ cosð ~OtÞdt ¼

X 1T1 sechð ~Op=2DÞ

r2D
, (29)

A2 ¼ �
2 ~mðr5 � 1ÞX 1D

r2X 3

Z 1
�1

½sechðDtÞ�2

½cschðDtÞ�2
dt ¼ �

4 ~mðr5 � 1ÞX 1

r2X 3
, (30)

B2 ¼

Z 1
�1

2T2 tanhðDtÞ sinðOtÞdt ¼ �
T2p cschð ~Op=4DÞsechð ~Op=4DÞ

D
, (31)

C ¼

Z 1
�1

2X 3T3

r1
sechðDtÞ cosð ~OtÞdt ¼

2T3X 3p sechð ~Op=2DÞ

r1D
. (32)

Integral (27) can be evaluated via residue theory (see Appendix A for details), yielding

A11 ¼

Z 1
�1

F ½sinhðDtÞ�2

½coshðDtÞ�4fp1 þ p2½sinhðDtÞ�2g
dt

�ðDt ¼ zÞF0 2 lim
z!a

1

3!

d3

dz3
ðz� aÞ4

f ðzÞ

hðzÞ

� �
þ 2 lim

z!b

d

dz
ðz� bÞ

f ðzÞ

hðzÞ

� �� �
¼ 2F0ðMa1 þMa2Þ. ð33Þ

In this solution, we have defined the terms

F0 ¼
1

~m
�

2X 3X
3
1

r22ðr5 � 1Þðr4 � 1Þðr3 � 1Þ
þ

2X 3X 1

r2ðr5 � 1Þðr4 � 1Þ2
�

2X 3
3X 1

r1r2ðr5 � 1Þ2ðr4 � 1Þ

� �
, (34)

Ma1 ¼ lim
z!a

1

3!

d3

dz3
ðz� a1Þ

4 f ðzÞ

hðzÞ

� �
, (35)

Ma2 ¼ lim
z!b

d

dz
ðz� a2Þ

f ðzÞ

hðzÞ

� �
, (36)

f ðzÞ ¼
p
2

i � z
	 


½sinhðzÞ�2, (37)

hðzÞ ¼ ½cosh zðzÞ�4fp1 þ p2½sinhðzÞ�
2g, (38)

where a1 ¼ ðp=2Þi is the fourth-order pole and a2 ¼ arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1=p2Þ

p
i is the first-order pole of the integrand.

Ofcourse, i is the imaginary unit.
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Substituting Eqs. (28)–(33) into Eq. (12), we arrive at the Melnikov function for our system of equations:

Mðt0Þ ¼ F 0ðMa þMbÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB1 þ CÞ2 þ B2

2

q
sinð ~Ot0 þ jÞ, (39)

where j ¼ arctgððB1 þ CÞ=B2Þ. The Melnikov criterion is thusffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB1 þ CÞ2 þ B2

2

q
4F 0ðMa þMbÞ. (40)

Close inspection of Eq. (40) reveals that since F0 ¼ F0ðr1; r2; r3;r4; r5; ~mÞ, B1 ¼ B1ðr1; r2; ~O;T1Þ,
B2 ¼ B2ðr1; r2; ~O;T2Þ, and C ¼ Cðr1; r2; ~O;T3Þ, Eq. (40) is a function of the ten system parameters
r1; r2; r3; r4; r5; ~m; ~O;T1;T2;T3. If condition (40) is satisfied, then the system modeled by Eqs. (5a)–(5f) will
exhibit chaotic dynamics near the heteroclinic orbits for sufficiently small e.
3. Results based on Melnikov’s method

We have analytically proven the existence of chaotic evolution in the attitude of an energy-dissipating,
liquid-filled satellite subject to time-periodic perturbations. Criterion (40) can be used to separate the chaotic
and non-chaotic regions of parameter space, and if necessary avoid chaotic motion in this class of satellites.
The Melnikov chaos criterion depends on ten parameters: the dimensionless moments of inertia r1, r2, the fuel
slug parameters r3, r4, r5, the driving frequency of the perturbing torques ~O, the amplitudes of the perturbing
torques T1, T2, T3, and the damping parameter ~m. By fixing seven of these parameters, the remaining three-
dimensional parameter space can be studied in detail. Some of these three-dimensional studies are shown in
Figs. 3–5.

Fig. 3 shows the dividing surface between chaotic and non-chaotic motion in the ~O� T1 � ~m space, as
determined by Eq. (40). The moment of inertia parameters were set to r1 ¼ 1:3; r2 ¼ 0:2; r3 ¼

55:6; r4 ¼ 83:2; r5 ¼ 111:2. Parameter values above the surface shown lead to chaotic motion. The surface
flattens at ~m ¼ 1 because we have imposed the condition ~uo1. We can see that as T1 increases, chaotic motion
becomes easier to achieve. For sufficiently small T1, on the other hand, it is impossible to obtain chaotic
motion. Fig. 4 shows the dividing surface between chaotic and non-chaotic motion in the r1 � T1 � ~m space, as
determined by Eq. (40). The surface shows the extent to which chaotic motion depends on the shape of the
rigid body. We see that as r1! 1, the value corresponding to a nearly symmetric, prolate body, we enter a
region where no chaotic motion occurs. Fig. 5 also shows the dependence of chaotic motion on the shape of
the rigid body, but this time for r2 instead of r1. We see that as r2! 1, chaotic motion becomes impossible for
any value of T1. This shape corresponds to a nearly symmetric, oblate carrier body.
T1

μ

0.5

1

1.5

0.1
0.2 0.3 0.4

0.5

0
0.5

1

Ω

Fig. 3. The surface separating chaotic from non-chaotic for the parameter space ~O� T1 � ~m.
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Fig. 4. The surface separating chaotic from non-chaotic motion for the parameter space r1 � T1 � ~m.
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Fig. 5. The surface separating chaotic from non-chaotic motion for the parameter space r2 � T1 � ~m.
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4. Numerical simulation

In the case of zero external driving torque (Ti ¼ 0), the viscous fuel slug dissipates energy. Over time, T

decreases and the energy ellipsoid shrinks. As shown in Figs. 6 and 7, this leads to an open polhode path that
spirals outward from the minor axis and is captured at one of the major axes. Fig. 6 was obtained by
numerically solving Eqs. (5) with the following initial conditions and parameters:

ðcosðpi=36Þ;� sinðpi=36Þ; 0:0001; 0; 0; 0:2Þ; r1 ¼ 1:3; r2 ¼ 0:67.

Fig. 7 was obtained by simulating Eqs. (5) with the following initial conditions and parameters:

ðcosðpi=36Þ;� sinðpi=36Þ; 0:0001; 0; 0;�0:2Þ; r1 ¼ 1:3; r2 ¼ 0:67.
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Fig. 6. The path of the angular velocity vector in body axis coordinates starts with a positive minor axis spin and finishes with positive

major axis spin.
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Fig. 7. The path of the angular velocity vector in body axis coordinates starts with a positive minor axis spin and finishes with negative

major axis spin.
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Fig. 8. The path of the angular velocity vector in body axis coordinates starts with a positive minor axis spin and finishes with chaotic

spin.
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As is clearly shown in Figs. 6 and 7, the orientation of the spacecraft relative to the fixed angular momentum
vector at the end of the maneuver cannot be determined a priori. The spacecraft could end up with either a
positive or a negative major axis spin. Physically, this corresponds to two final attitudes that are 1801 apart.
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In the presence of external perturbations, the spacecraft exhibits non-periodic solutions which possess many
of the characteristics of randomness. Fig. 8 is obtained by simulating Eqs. (5) with the following initial
conditions and parameters:

ðcosðpi=36Þ;� sinðpi=36Þ; 0:5; 0; 0; 0:2Þ,

r1 ¼ 1:39; r2 ¼ 0:45; � ¼ 0:013; T1 ¼ 0:001; T2 ¼ 0:001; T3 ¼ 0:001.

5. Concluding remarks

This paper derives the six-dimensional ordinary differential equations governing the attitude motion of a
spacecraft with a completely liquid-filled cavity, subject to time-periodic perturbing torques. This system of
equations is then transformed into a form suitable for the application of Melnikov’s method. Using the
Melnikov integral, we obtain a theoretical criterion for chaotic motion in the spacecraft’s attitude. In addition,
three-dimensional subspaces of the full nine-dimensional parameter space are studied analytically to obtain a
qualitative and quantitative understanding of the interactions leading to nonlinear motion. An analysis of
these results shows that the shape of the rigid body and the driving frequency of the perturbations have a
profound influence on the appearance of chaotic dynamics. Numerical solutions to these equations show that
the motion of a perturbed satellite possesses characteristics common to random, non-periodic solutions. This
solution was also theoretically proven to be chaotic using Melnikov’s method.
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Appendix A. Evaluation of the Melnikov integral

Using an idea suggested by Or [5], we apply residue theory to the Melnikov integral. First one constructs
a closed circuit C containing the two poles z ¼ a1 and a2. In this case, we choose a rectangular strip in
the upper half of the complex plane. C runs counter-clockwise through the points z ¼ �R, z ¼ R, z ¼ R+ip,
and z ¼ �R+ip, and finally back to z ¼ �R. By letting R-N and applying the residue theorem, we
obtain

A11 ¼

Z 1
�1

F ½sinhðDtÞ�2

½coshðDtÞ�4fp1 þ p½sinhðDtÞ�2g
dt ¼ F 0

1

pi

I
C

f ðzÞ

hðzÞ
dz

¼ F 0
2pi

pi

X2
i¼1

Re
z¼ak

s
f ðzÞ

hðzÞ

� �" #

¼ 2F 0ðMa1 þMa2Þ. ðA:1Þ

Expanding f(z) and h(z) into Taylor series around the point z0, one obtains

f ðzÞ ¼ f 0ðz0Þ þ f 1ðz0Þðz� z0Þ þ
1
2
f 2ðz0Þðz� z0Þ

2
þ 1

6
f 3ðz0Þðz� z0Þ

3
þ � � � , (A.2)

hðzÞ ¼ h0ðz0Þ þ h1ðz0Þðz� z0Þ þ
1
2
h2ðz0Þðz� z0Þ

2

þ 1
6
h3ðz0Þðz� z0Þ

3
þ 1

24
h4ðz0Þðz� z0Þ

4

þ 1
120

h5ðz0Þðz� z0Þ
5
þ 1

720
h6ðz0Þðz� z0Þ

6
þ � � � . ðA:3Þ
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If z0 ¼ a1, then h0 ¼ hða1Þ ¼ 0, h1 ¼ ðdh=dzÞða1Þ ¼ 0, h2 ¼ ðd
2h=dz2Þða1Þ ¼ 0, and h3 ¼ ðd

3h=dz3Þða1Þ ¼ 0.
The more interesting terms are

h4 ¼
d4h

dz4
ða1Þ ¼ 128p2½cosh zða1Þ�

4½sinhða1Þ�
2 þ p2½coshða1Þ�

4f8½coshða1Þ�
2

þ 8½sinhða1Þ�
2g þ 6p2f2½coshða1Þ�

2 þ 2½sinhða1Þ�
2gf4½coshða1Þ�

4

þ 12½coshða1Þ�
2½sinhða1Þ�

2g þ 8p2 coshða1Þ sinhða1Þf40½coshða1Þ�
3 sinhða1Þ

þ 24 coshða1Þ½sinhða1Þ�
3g þ fp1 þ p2½sinhða1Þ�

2gf40½coshða1Þ�
4

þ 192½coshða1Þ�
2½sinhða1Þ�

2 þ 8½sinhða1Þ�
2g,

h5 ¼
d5h

dz5
ða1Þ ¼ 32p2½cosh zða1Þ�

5 sinhða1Þ þ 20p2½coshða1Þ�
3 sinhða1Þf8½coshða1Þ�

2 þ 8½sinhða1Þ�
2g

þ 80p2 coshða1Þ sinhða1Þf4½coshða1Þ�
4 þ 12½coshða1Þ�

2½sinhða1Þ�
2g þ 10p2f2½coshða1Þ�

2 þ 2½sinhða1Þ�
2g

� f40½coshða1Þ�
3 sinhða1Þ þ 24 coshða1Þ½sinhða1Þ�

3g þ fp1 þ p2½sinhða1Þ�
2gf544½coshða1Þ�

3 sinhða1Þ

þ 480 coshða1Þ½sinhða1Þ�
3g þ 10p2 coshða1Þ sinhða1Þf40½soshða1Þ�

4

þ 192½coshða1Þ�
2½sinhða1Þ�

2 þ 24½sinhða1Þ�
4g

and

h6 ¼
d6h

dz6
ða1Þ ¼ 768p2½cosh zða1Þ�

4½sinhða1Þ�
2 þ p2½coshða1Þ�

4f32½coshða1Þ�
2 þ 32½sinhða1Þ�

2g

þ 15p2f8½coshða1Þ�
2 þ 8½sinhða1Þ�

2gf4½coshða1Þ�
4 þ 12½coshða1Þ�

2½sinhða1Þ�
2g þ 160p2 coshða1Þ

� sinhða1Þf40½coshða1Þ�
3 sinhða1Þ þ 24 coshða1Þ½sinhða1Þ�

3g þ 12p2 coshða1Þ sinhða1Þf544½coshða1Þ�
3

� sinhða1Þ þ 480 coshða1Þ½sinhða1Þ�
3g þ 15p2f½coshða1Þ�

2 þ 2½sinhða1Þ�
2gf40½coshða1Þ�

4 þ 192½coshða1Þ�
2

� ½sinhða1Þ�
2 þ 24½sinhða1Þ�

4g þ fp1 þ p2½sinhða1Þ�
2gf544½coshða1Þ�

4

þ 3072½coshða1Þ�
2½sinhða1Þ�

2 þ 480½sinhða1Þ�
4g.

For z0 ¼ a1 we also have

f 0 ¼ 0; f 1 ¼ ½sinhða1Þ�
2; f 2 ¼ �4 sinhða1Þ coshða1Þ and

f 3 ¼ �4½sinhða1Þ�
2 � 4f½sinhða1Þ�

2 þ ½coshða1Þ�
2g.

Ma1 can thus be evaluated via residue theory as

Ma1 ¼
4

h4

f 3

6
�

h6

30h4
�

h5

5h4

f 2

2
�

h5f 1

5h4

� �� �
. (A.4)

If z0 ¼ a2, then we have h0 ¼ hða2Þ ¼ 0,

h1 ¼
dh

dz
ða2Þ ¼ 2p2½coshða2Þ�

5 sinhða2Þ þ 4½coshða2Þ�
3 sinhða2Þfp1 þ p2½sinhða2Þ�

2g

and

f 0 ¼
p
2

i � a2

	 

½sinhða2Þ�

2.

Ma2 can thus be evaluated via residue theory as

Ma2 ¼
f 0

h1
. (A.5)
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Substituting (4) and (5) into (1) yields the result

A11 ¼ 2F 0
4

h4

f 3

6
�

h6

30h4
�

h5

5h4

f 2

2
�

h5f 1

5h4

� �� �����
z¼a1

þ
f 0

h1

����
z¼a2

( )
. (A.6)
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